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Abstract

Network-scale maintenance planning mainly depends on the expected improvement in
a structure’s condition following an intervention. Quantifying the effect of interventions
is commonly based on either the expert judgement and reference values, or ad hoc
estimation from visual inspection data. However, visual inspections are subjective and
have large variability over time due to the inspectors’ uncertainty. State-space models
(SSM) have been effectively utilized for quantifying the inspectors uncertainty and
modelling the deterioration based on visual inspections. In this study, a new method is
proposed to quantify the effect of interventions on structures using the SSM framework.
This method allows estimating the local effect of interventions at the structural-element
level as well as at the network-scale for a population of structural elements. Moreover,
the estimation procedure takes into account the inspectors uncertainty and offers a
coherent integration for intervention actions within the deterioration model, in addition
to enabling the estimation for the service-life of interventions. The proposed approach
is verified using synthetic data and validated using real data taken from inspections
and interventions performed on a bridge network in Canada.

Keywords: Effect of Interventions, Visual Inspections, Inspector Uncertainty, Bridge
Network Maintenance, State-Space Models, Structural Health Monitoring.

1 Introduction

Interventions are systematic operations that are performed to sustain the serviceability and
safety of structures [9]. In the context of network-scale bridge maintenance, an intervention
can be classified into three categories, namely are preventive maintenance, rehabilitation
and replacement [10, 27]. While one can expect a greater improvement from a rehabilitation
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compared to a preventive maintenance, it is important to quantify the effect of each strategy
on the condition of structural elements. This is because the network-scale planning of
interventions is subject to budgetary constraints that require effective resource allocation
[6, 28]. In addition, quantifying the effect of interventions is essential for maintaining the
accuracy of deterioration analyses, as it is likely to have multiple interventions during
the lifetime of structural elements. In order to quantify the effect of interventions, it is
required to have information about the health state of structures before and after applying
interventions. Visual inspections are commonly utilized in assessing the health of bridges on
a network-scale [17, 22, 4, 18, 11, 26]. Relying on visual inspection data to directly estimate
the effect of interventions is insufficient because they are subjective and are based on the
judgement of different inspectors [1, 19, 5, 15]. This fact explains the noticeable variability
over time in the reported health state of the structural elements [1, 12]. Quantifying the effect
of interventions based on visual inspections is traditionally done using a Discrete Markov
Model (DMM) [8, 6, 7, 24, 23]. The effect of interventions is addressed by two metrics,
namely the improvement in the condition and the time delay in the deterioration [8, 23].
These quantities are determined by either relying on the expert judgment [8, 20], or through
direct estimation from the inspection data [6, 7, 23]. In either cases, the effect of intervention
is characterized by a deterministic value or by three values of minimum, maximum and
mode [16, 20]. These representations are insufficient, as applying the same intervention on
different structural elements may yield different outcomes [3]. In addition, quantifying the
effect of interventions directly from the observations implies disregarding the inspectors
uncertainty which is also the case in DMM deterioration models [12]. Accommodating
the inspectors uncertainty has been effectively done using state-space models (SSM) [12].
Specifically, the SSM-KR model which is a hybrid framework that combines state-space
models (SSM) and kernel regression (KR) [13]. The benefit of using SSM-KR is that it
takes advantage of the structural similarity among bridges to improve the deterioration
model performance, which makes SSK-KR well suited for short time-series analyses. In this
study the effect of interventions is modelled as random variables within the network-scale
deterioration model SSM-KR. The proposed formulation enables estimating the local effect
of interventions at the structural element level and on the network-scale for a population of
structural elements. In addition, it allows accommodating the inspectors uncertainty in the
aforementioned estimates. This provides a better understanding for the effect of different
types of interventions on a network-scale, which lays the groundwork for improving the
planning and allocation of maintenance funds. A byproduct of the proposed framework
is to enable the continuity of the deterioration analyses over the lifetime of a structural
element, where interventions are coherently integrated within the deterioration framework.
Verification and validation of the proposed approach are performed using synthetic and real
data respectively. The real data in this study is taken from a network of bridges in Canada.
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1.1 Notations

The bridge network is defined by the set B = {b1, b2, . . . , bB} and the structural attributes
of these bridges are defined by Z = {z1, z2, . . . ,zB}, whereby zj is a vector representing the
structural attributes of the j-th bridge bj . The structural elements are defined by the set

E = {ej1, ej2, . . . , ejEj}, where a structural element ejp represents the p-th structural element
associated with bridge bj . The set of interventions is defined by R∗ = {R1, . . . ,Rj , . . . ,RBr},
whereby Rj represents the interventions performed on bridge bj . Each intervention is defined

by Rj = {hj , τj}, with hj = [hj1 · · · hjr · · · hjR]ᵀ is a vector of R intervention categories and
τj is the intervention time. An intervention category hr can be applied to one or multiple
structural elements in different bridges. In the context of this study, each structural element
in the dataset has underwent a single intervention in the time-window of the available data.
The deterioration information collected through inspections include the inspection time t,
the inspector Ii from the set of inspectors I = {I1, I2, . . . , II} responsible for evaluating
bridges in B, and the health condition of the structural element ỹ ∈ [l, u], with l representing
the worst possible condition and u representing the best condition. The symbol (∼) in ỹ is
utilized to differentiate between observations in the bounded space [l, u] and unbounded
space R [12].

2 Interventions and Structural Deterioration

In this section, the relation between interventions and deterioration analyses is demonstrated.
The formulation of the deterioration model is presented followed by the proposed method
for quantifying the effect of interventions.

2.1 Modeling Structural Deterioration

Analyzing the effect of interventions coincides with the deterioration analyses of structural
elements. This is because the intervention type hr is determined by a large extent based on
the deterioration state of the structural element. Modelling the deterioration of structural
elements in this study is done based on the SSM-KR model [13]. The SSM-KR combines a
state-space model (SSM) with kernel regression (KR) to enable analyzing the deterioration
behaviour using visual inspection data and structural attributes. The SSM characterizes
the deterioration behaviour based on a kinematic model [2], that is defined by the transition
model,

transition model︷ ︸︸ ︷
xt = Axt−1 +wt, wt : W ∼ N (w; 0,Qt)︸ ︷︷ ︸

process errors

, (1)

where xt : X ∼ N (x,µt,Σt) is the state vector at time t, A is the state transition matrix,
wt is the process error with Qt representing the process error covariance matrix. The state
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vector describes the condition xt, the speed ẋt, and acceleration ẍt. The inspection data
are utilized in updating the state using the observation model described by,

observation model︷ ︸︸ ︷
yt = Cxt + vt , vt : V ∼ N (v; 0, σ2

V (Ii))︸ ︷︷ ︸
observation errors

, (2)

where yt represents the observation, C is the observation matrix and vt : V ∼ N (v; 0, σ2
V (Ii))

is the observation error associated with each inspector Ii ∈ I performing the inspections.
Estimating the hidden states is done using the Kalman filter (KF) [14], described by the
short form,

(µt|t,Σt|t,Lt) = Kalman filter(µt−1|t−1,Σt−1|t−1,yt,At,Qt,Ct,Rt), (3)

where µt|t ≡ E[Xt|y1:t], Σt|t ≡ cov[Xt|y1:t] represent the posterior expected value and
covariance respectively, given observations y1:t, and Lt represents the observations’ log-
likelihood. The KF state estimates are further refined using the Kalman smoother (KS)
[21], which improves the estimates based on information from all the observations in a time
series. The monotonicity of the deterioration is ensured by constraining the speed estimates
to be negative, which is done using the PDF truncation method [25]. Furthermore, a space
transformation is performed on the inspection data, using a transformation function, to
allow the model’s predictions and forecasts to be restricted within the range of feasible
values, in addition to the uncertainty being dependent on the state [12].
The kernel regression in SSM-KR comes into place for determining the initial deterioration
speed. This is done based on a multivariate kernel function k : RQ → R representing the
multiplicative kernel,

k
(
zj ,Zc(m), `

)
= k

(
z1
j − z1

c(m)

`1

)
· . . . · k

(
zQj − zQc(m)

`Q

)
, m = 1, . . . , M. (4)

where Zc(m) =
[
z1
c . . . z

Q
c

]
∈ RMQ×Q is a Q-dimensional grid of reference points with M

representing the number of reference points in each dimention, k(.) is a univariate kernel
function and ` = [`1 . . . `Q] are model parameters associated with each structural attribute.
The procedure for estimating the parameters and hidden states related to SSM-KR is
detailed in Hamida and Goulet [13].

2.2 Framework for Quantifying the Effect of Interventions

In order to accommodate the effect of interventions in the SSM-KR model, the state vector
is augmented to include the following components,

xjp,t =
[
xjp,t ẋ

j
p,t ẍ

j
p,t δt δ̇t δ̈t

]ᵀ
, (5)
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where xjp,t is the state vector at time t: Xt ∼ N (µt,Σt), composed of the vector

[xjp,t ẋ
j
p,t ẍ

j
p,t] which describes the condition, speed and acceleration components respectively,

and the vector [δt δ̇t δ̈t] which represents the changes in the condition, speed and accelera-
tion following an intervention hr. The effect of an intervention on a structural element is
quantified within SSM-KR by modifying the transition model defined in Equation (1) such
that,

xt = Atxt−1 +wt, wt :

{
W ki ∼ N (0,Qki

t )

W r ∼ N (0,Qr
t )

(6)

The transition matrix At is defined by,

At=τ =

[
Aki I3×3

03×3 I3×3

]
, At6=τ =

[
Aki 03×3

03×3 I3×3

]
, (7)

with I representing the identity matrix and Aki defined by,

Aki =

 1 ∆t ∆t2

2
0 1 ∆t
0 0 1

 . (8)

The full covariance for the transition model errors is described by the matrix Qt defined as,

Qt=τ =

[
Qki +Qr 03×3

03×3 Qr

]
, Qt6=τ =

[
Qki 03×3

03×3 03×3

]
, (9)

with Qr and Qki defined as,

Qr = diag
([
σ2
wr
σ̇2
wr
σ̈2
wr

])
, Qki = σ2

w

 ∆t5

20
∆t4

8
∆t3

6
∆t4

8
∆t3

3
∆t2

2
∆t3

6
∆t2

2 ∆t

 . (10)

The standard deviation σw characterizes the kinematic model process noise, while σwr is a
vector containing the standard deviations describing the element-level intervention errors.
Because of the large variability and limited data in each time-series, it is assumed that the
deterioration state of a structural element after an intervention is either staying the same
as it was prior to the intervention or is improving by a positive quantity. Consequently, the
expected deterioration speed at time t = τ is bounded with µ̇τ ∈ [µ̇τ−1, 0] and similarly for
the acceleration µ̈τ ∈ [µ̈τ−1, 0]. In order to accommodate the aforementioned bounds, the
following state constraints are applied in the KF,

µ̇τ−1 ≤µ̇τ ≤ 0,

µ̈τ−1 − σ̈τ−1 ≤µ̈τ ≤ σ̈τ−1.
(11)
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The acceleration is allowed to be positive to accommodate cases where the acceleration is
slightly positive or near zero at the time step before the intervention t = τ − 1. This implies
that the deterioration speed was declining at that point in time. In order to ensure the
consistency in the model, the state constraints are also applied in the KS after changing
the bounds as in,

µ̇τ ≤µ̇τ+1,

µ̈τ ≤µ̈τ+1 + σ̈τ+1.
(12)

The state constraints are only examined at the transition from time t = τ − 1 to time t = τ
or reversely; if one of the constraints is violated, the PDF truncation method is applied [25].

2.3 State Estimation and Model Parameters

The hidden state δt, δ̇t and δ̈t that represent the network-scale effects of interventions
are estimated based on sequential updating from the inspection data. For a given type
of intervention hr ∈ R, the expected value for each component is initially set to zero
µδt = µδ̈t = 0, except for the speed µδ̇t . This is because assigning µδ̇t ≈ 0 can trigger the
state constraints defined in Equation (11), resulting in truncating the PDF of the state
at an early stage. After the initialization step, the intervention quantification framework
presented in §2.2 is applied, through which the states δt, δ̇t and δ̈t are updated based on
the inspection data before and after intervention hr on element ejp. The updated state is
then utilized in the analyses of structural element ejp+1 which allows the states δt, δ̇t and

δ̈t to be updated with another set of inspections before and after intervention hr. The
sequential updates are carried out up to the last structural element with the intervention
hr. Therefore, the estimation quality for quantifying the effect of an intervention type
depends on the number of structural elements that underwent the same type of intervention.
Following the update from the data of the last structural element, the updated states δt,
δ̇t and δ̈t can be utilized in modelling the element-level interventions within the SSM-KR
framework. The parameters associated with the intervention quantification framework are
defined in the set θr = {σwr , σ̇wr , σ̈wr , σhr , σ̇hr , σ̈hr}, where σhr , σ̇hr , σ̈hr are the standard
deviations associated with the prior knowledge for the states δt, δ̇t and δ̈t at the beginning
of the sequential estimation process. The subscript in θr is a reference to the intervention
category hr, which implies that each intervention category has its own set of parameters.
The estimation for the aforementioned parameters is done using the Maximum Likelihood
Estimate (MLE). The network-scale log-likelihood [12] is,

L(θr) =

Br∑
j=1

E
j
r∑

p=1

Tp∑
t=1

ln f(yjt,p|yj1:t−1,p,θr), (13)

where Br, E
j
r are the total number of bridges and structural elements respectively, that

underwent intervention hr, and Tp is the number of observation per time series. The
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parameters estimation problem is defined as,

θ∗r = arg max
θr

L(θr),

subject to: σwr , σ̇wr , σ̈wr > 0,

σhr , σ̇hr , σ̈hr > 0.

(14)

Solving the optimization problem defined above is possible using gradient-based optimization
methods such as Newton-Raphson [12].

3 Interventions & Inspections Database

In this section, a dataset of real interventions and inspections is introduced, in addition to
discussing the details of synthetic inspections and interventions dataset generated to verify
the model performance.

3.1 Database for the Real Case Study

The real database is composed of visual inspections, structural attributes and intervention
data for a network of B ≈ 10000 bridges located in the province of Quebec, Canada. The
network-scale interventions are categorized as h1: preventive maintenance, h2: routine
maintenance and h3: repairs [18]. The aforementioned interventions are performed based on
either a health condition threshold being violated or a recommendation from the inspector.
Moreover, the visual inspections of structural elements are reported based on 4 categories of
damage severity, A: Nothing to little, B: Medium, C: Important and D: Very Important [18].
The inspectors report the percentage of a structural element’s area that belongs to each
of damage categories, such that 0% ≤ ya, yb, yc, yd ≤ 100%, and ya + yb + yc + yd = 100%.
An example of visual inspection is : ya = 60%, yb = 20%, yc = 10%, yd = 10%, implying
that 60% of the structural element area has no damage, 20% has medium damage, 10% has
important damage and 10% has very important damage. Representing the 4 categories into
a single metric is done by combining them using a weighted sum,

ỹ = ω1ya + ω2yb + ω3yc + ω4yd, (15)

with ω1 = 100, ω2 = 75, ω3 = 50, ω4 = 25 representing the utilities and ỹ is the aggregated
observation [12]. This aggregation allows the deterioration condition of structural elements
to be a continuous numerical value with ỹ ∈ [25, 100], where ỹ = 100 is equivalent to a
perfect health state and ỹ = 25 is equivalent the worst health state (e.g. ya = 0%, yb =
0%, yc = 0%, yd = 100%).
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3.2 Simulating Interventions and Synthetic Data

Synthetic data is generated in order to verify the proposed framework performance, provided
that the true effect of interventions is known. Therefore, the synthetic dataset is ensured
to be similar to the real data, both quantitatively and qualitatively. Simulating the
interventions is done according to two factors; the structure priority, and the deterioration
state. The priority factor is assigned to structures randomly, based on a uniform distribution
Ω ∼ U(1, 3). The aforementioned factor emulates the inspector’s recommendation for
performing an intervention in the real case. The type of intervention is determined using a
synthetic decision making system defined by if-then rules, which are detailed in Appendix
1. In total, four synthetic intervention actions are defined, h0: do nothing, h1: preventive
maintenance, h2: repairs and h3: major repairs. Whenever one of the actions h1:3 is applied,
the timing of the synthetic intervention is recorded. The true improvement associated with
each type of intervention is modeled by a Normal distribution with parameters defined in
Table 1.

Table 1: Types of synthetic interventions with their corresponding expected improvement
represented by an expected value and a standard deviation.

Type µδ σδ µδ̇ σδ̇ µδ̈ σδ̈

h1 0 10−4 0.2 0.05 0 10−4

h2 7.5 2 0.3 0.1 0 10−4

h3 18.75 4 0.4 0.15 0 10−4

For simulating the deterioration state, the true state is generated using the transition model
with σw = 5× 10−3 as defined in Equation (1). Thereafter, the observations are generated
based on the observation model described in Equation (2), with each inspector Ii ∈ I
having a standard deviation generated from a Uniform distribution σV (Ii) ∼ U(1, 6). The
deterioration state in the synthetic data is represented by a continuous numerical value
with ỹ ∈ [25, 100], with each structural element having an average service life of 60 years.
The majority of structural elements have 3 to 5 observations over time, while few structural
elements have 8-10 observations. Moreover, we ensured that there is at least one observation
before or after the intervention. As for the synthetic structural attributes, a single attribute
is considered and defined by the following relation,

zj = 10× |ẋj0|+ 4 + w0 : W0 ∼ N (w0; 0, 0.52). (16)

The other characteristics and thresholds that are required in order to simulate realistic data
are inherited from the measures defined by [12].
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4 Case Studies

In this section, the performance of the proposed framework is verified using synthetic data
and thereafter validated with real data.

4.1 Model Verification Using Synthetic Data

The synthetic dataset is composed of E = 17000 structural elements with a total of
Er = 414 structural elements that underwent interventions belonging to categories h1:3. The
observations in the synthetic dataset are obtained from I = 223 inspectors. The structural
elements without interventions are utilized for training the SSM-KR deterioration model.
Thereafter, the pre-trained deterioration model is utilized for modelling interventions as
described in §2.2. The optimized model parameters θ1:3 for each intervention category are
shown in Table 2. The state estimation for δ and δ̇ using the proposed framework with

Table 2: Estimated model parameters for synthetic interventions.

Intervention σwr σ̇wr σ̈wr σhr σ̇hr σ̈hr

h1 1.42 0.03 0.01 0.26 0.79 0.09
h2 3.10 0.79 0.05 6.77 0.63 0.03
h3 3.82 0.75 0.04 9.82 0.78 0.002

parameters θ1:3 are shown in Figure 1. In this graph, the expected change in the condition
µδ converges to the true change δ in each of the intervention categories h1:3. Moreover, the
state estimations shows that the proposed framework provides reliable estimates with as
little as 20 structural elements with interventions. On the other hand, the estimate for the
change in the deterioration speed δ̇ is not as accurate as the condition estimates δ. The
limited performance in estimating δ̇ is noticeable in the case of intervention category h3.
The main reasons for the limited predictive capacity of δ̇ are: the fact that the deterioration
speed is not directly observed and there are few observations before and/or after the
intervention. As for interventions of type h3, this category of interventions is mainly
applied on structures having an average health condition, which is associated with a higher
uncertainty in the estimates of the deterioration state [12]. Nonetheless, if the number
of observations before and/or after the intervention is sufficient, the state estimation of
δ̇ converges to the true value. An example that demonstrates the effect of the number
of observations on µδ̇ is shown in Figure 2. In this example, the expected value µδ̇ for
the intervention h3 approaches the true change as the number of observations per time
series increases. Although estimating δ̇ is limited for interventions of type h3, the resulting
state δ̇ can be considered as a good initial estimate for the intervention at the structural
element level. This initial estimate is subsequently updated according to the data of each
structural element using the KS. This is demonstrated in Figures 3-5, with examples of time
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Figure 1: Recursive estimation for the network-scale change in the deterioration condition
δ and speed δ̇ based on data from E1 = 139 structural elements underwent intervention h1,
E2 = 141 elements underwent intervention h2, and E3 = 134 elements underwent intervention
h3.
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Figure 2: The effect of the number of observations per time series Tp on the state estimate

of δ̇τ under the same intervention h3 at time τ ≈ Tp
2 .

series for synthetic structural elements. Figure 3 illustrates an example of a deterioration
behaviour with an intervention h1. In this example, the true deterioration state before
and after the intervention is within the confidence interval of the model, despite having a
single observation before the intervention. Another example shown in Figure 4, illustrates
the model performance in the case of synthetic structural element with an intervention
of category h2. In this case, the estimate of the deterioration state is consistent with the
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t,1 ∈ [25, 100] of the synthetic structural element e184
1 with an intervention

h1 at time τ = 2018 and error bars representing the inspectors’ uncertainty estimates.

true state of the speed and the condition even though a single observation exist after the
intervention.
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Figure 4: Deterioration state analysis for the condition and the speed based on the
observations ỹ53

t,1 ∈ [25, 100] of the synthetic structural element e53
1 with an intervention h2

at time τ = 2017 and error bars representing the inspectors’ uncertainty estimates.

The last time series example from the synthetic dataset is shown in Figure 5, where the
model performance is examined in a structural element with intervention of category h3.
This example shows that although the capacity of estimating δ̇ is limited for this intervention
category, the proposed framework has yielded an acceptable performance in estimating
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the deterioration state, verified by the true state being within the confidence interval of
the model estimates. In order to examine the modelling capacity of interventions for the
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Figure 5: Deterioration state analysis for the condition and the speed based on the
observations ỹ314

t,1 ∈ [25, 100] of the synthetic structural element e314
1 with an intervention

h3 at time τ = 2015 and error bars representing the inspectors’ uncertainty estimates.

entire population of synthetic structural elements, the errors in the state estimates after
an intervention are examined. Table 3 shows the expected errors in the deterioration
condition E[ε] = µτ |T − xτ , and the deterioration speed E[ε̇] = µ̇τ |T − ẋτ , alongside the
standard deviations σε, σ̇ε and the skewness γ and γ̇ for the condition and the speed
respectively. The error estimates reported in Table 3 show that for a sample of Er = 414

Table 3: The error in the state estimate following an intervention represented by the
expected error ± standard deviation and skewness γ for a sample of 414 synthetic structural
elements.

Intervention E[ε]± σε γ E[ε̇]± σ̇ε γ̇

h1 −0.22± 1.62 -0.09 0.04± 0.12 0.38
h2 +0.09± 1.75 -0.34 0.09± 0.13 0.01
h3 −0.54± 2.29 0.05 0.10± 0.15 0.38

synthetic structural elements, the distribution of errors is approximately symmetric (i.e.
−0.5 < γ < 0.5), and that the bias in the estimates is insignificant compared to the range
of values of which the speed and the condition can take. Moreover, it is noticed that the
estimated error increases with major interventions (i.e. h3 vs. h1), this is attributed to
the fact that major interventions are applied to structures in an average health condition,
which is associated with increase in the uncertainty of the deterioration state estimates
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[12]. An additional advantage for the proposed method is that it allows estimating the
service-life of an intervention th, which represents the number of years before returning to
the original state prior to intervention hr. This can be done by estimating the probability
of crossing the original state, from the cumulative distribution function (CDF) at each year
after the intervention using,

F (th|hr) = Pr(Xτ+t ≤ xτ−1|hr), ∀t ∈ Z+
0 . (17)

The probability density function f(th|hr) can be obtained by differentiating the CDF in
Equation 17. In order to demonstrate the estimation of the service-life th, consider the
time series example shown in Figure 4. Estimating the service-life of intervention h2 can be
done by computing F (th|h2) and f(th|h2), which yields the probability distribution shown
in Figure 6.
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Figure 6: The cumulative distribution and probability density functions for the time
before returning to the original condition state prior to intervention h2 on synthetic
structural element e53

1 , with E[th] representing the expected time of the return, and th(true)
representing the true time of the return.

Based on the PDF shown in Figure 6, the number of years before returning to the original
state is E[th] = 15 years, which is near the true return th(true) = 17 years. The single case
estimate can be generalized to include all elements that underwent the same type of inter-
vention h2, by computing the expected probability E[f(th|h2)] at each year. Consequently,
the PDF associated with intervention h2 for a population of synthetic structural elements
can be obtained as shown in Figure 7. This PDF is verified with the normalized histogram
for the true service-life of the synthetic structural elements.
It should be noted that estimating the service-life th of intervention hr, depends mainly on
the capacity to perform long-term forecasts. Therefore, factors that affect the long-term
forecast (e.g., 2-3 inspections per element), would also affect the estimation of th.
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Figure 7: Comparison between the estimated probability density function and the normalized
histogram for the true returning time to the original state prior to intervention h2, based
on a population of synthetic structural elements E2 = 141.

4.2 Model Validation Using Real Data

Analyses with real data involves two types of structural element; the front walls and the
beams of different bridges. The first dataset consists in the interventions and inspections
for front walls which is classified as an abutment element [18]. This dataset includes a
total E = 16360 structural elements taken from B = 8278 bridges. The subset of bridges
that underwent interventions is composed of Br = 193 bridges with Er = 319 front wall
structural elements. The type of interventions involved in the analyses on front walls are
categorized according to the structures’ inspection manual [18]. The first intervention
category h2 is composed of activities that relate to strengthening and consolidation. The
second intervention category h3 includes a variety of repair activities, such as the repair of
concrete elements and masonry wall elements. Quantifying the effect of the aforementioned
intervention categories is done using the proposed framework. The estimated model
parameters for each category of interventions are shown in Table 4.

Table 4: Estimated model parameters for interventions on the front wall structural elements.

Intervention σwr σ̇wr σ̈wr σhr σ̇hr σ̈hr

h2 6.03 0.05 0.02 5.00 0.27 0.03
h3 9.34 0.05 0.01 9.99 0.31 0.02

The recursive state estimation for the expected improvement in the condition δ and speed
δ̇ are shown in Figure 8.
In Figure 8, the network-scale improvement in the condition from applying h2 interventions
is µδ2 = 13.57 with σδ2 = 1.38 compared to µδ3 = 17.56 with σδ3 = 1.28 gained from applying
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Figure 8: Recursive estimation for the network-scale change in the deterioration condition
and speed of the front wall structural elements, using data from E2 = 26 elements that
underwent intervention h2, and E3 = 58 elements that underwent intervention h3.

h3 interventions. Similarly, the deterioration speed improvement for h3 interventions is
µδ̇3 = 0.16 with σδ̇3 = 0.05, which is better than h2 interventions with µδ̇2 = 0.13 and

σδ̇2 = 0.06. It should be noted that in cases where there are two (or more) types of
interventions that are frequently applied together and at the same time, the recursive
estimation framework can provide the prior estimate for the effect of intervention based
on data from such instances only. However, with the limited amount of intervention data
currently available, the combination between interventions is not considered. Examples
of time series analyses for structural elements that underwent an intervention from each
category are shown in Figures 9-10. Figure 9 shows an example of a front wall structural
element that underwent intervention of type h2.
From Figure 9, the estimate of the deterioration condition before the intervention has a
lower uncertainty due to the observation from an inspector with a low uncertainty. The
second time series example, shown in Figure 10, is for a concrete front wall element that
underwent repairs activities from interventions category h3. In Figure 10 it is noticed that
the deterioration speed estimate has a high uncertainty before the intervention compared to
the estimate after the intervention. This is justified by the fact that a single observation is
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±σModel ỹ2773t,1 Inspection
Intervention h2 ±2σV (Ii)

20
09

20
11

20
13

20
15

20
17

20
19

20
21

20
23

−6

−4

−2

0
·10−1

Time (Year)

D
et

er
io

ra
ti

on
Sp

ee
d

of
e2

7
73

1

˜̇µ2773t|T,1 ±2σ̇Model
±σ̇Model Intervention h2

Figure 9: Deterioration state analysis for the condition and the speed based on the
observations ỹ2773

t,1 ∈ [25, 100] of the front wall structural element e2773
1 with an intervention

h2 at time τ = 2016 and error bars representing the inspectors’ uncertainty estimates.
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Figure 10: Deterioration state analysis for the condition and the speed based on the
observations ỹ541

t,1 ∈ [25, 100] of the front wall structural element e541
1 with an intervention

h3 at time τ = 2011 and error bars representing the inspectors’ uncertainty estimates.

available before the intervention compared to two observations after; in addition, if the state
estimate of the deterioration speed is near zero (upper bound), this estimate is ensured
to be nonpositive using the monotonicity constraint µ̇jt,p + 2σ̇jt,p ≤ 0 [12], if this constraint
is violated, the PDF of the speed is truncated using the PDF truncation method [12, 25].
The service-life th of interventions h2 and h3, for the front wall elements are reported by
the CDFs shown in Figure 11. The CDFs are estimated based on the data from E2 = 26
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structural elements for h2 interventions, and E3 = 58 structural elements for h3 interventions.
In Figure 11, the CDF associated with h3 interventions has a flatter curve compared to the

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

th (Year)

E[
F
(t

h
|h

2
)]

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

th (Year)
E[
F
(t

h
|h

3
)]

Figure 11: Cumulative distribution functions for the service-life th of intervention h2 (left),
and intervention h3 (right), based on data from front wall structural elements.

CDF associated with h2 interventions. This implies that overall, h3 interventions have a
service-life th grater than h2 interventions, which coincides with the overall improvement
results shown in Figure 8.

The second database consists in the inspections and interventions of beam structural
elements. This dataset includes a total of E = 24824 structural elements from B = 2881
bridges. The number of bridges that underwent interventions on beams is Br = 95, with
Er = 485 beam structural elements. A single intervention category h3 is examined with
activities that includes repair works for concrete and steel beam elements [18]. The estimated
model parameters associated with h3 are reported in Table 5.

Table 5: Estimated model parameters for interventions on the beam structural elements.

Intervention σwr σ̇wr σ̈wr σhr σ̇hr σ̈hr

h3 5.68 0.06 0.01 6.75 0.12 0.02

The hidden state estimation for the expected improvement in the condition and the speed
are shown in Figure 12. From this figure, it is noticed that the network-scale expected
improvement in the condition is µδ3 = 12.61 with σδ3 = 0.77, while the improvement in the

speed is µδ̇3 = 0.28 with σδ̇3 = 0.06.
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Figure 12: Recursive estimation for the network-scale change in the deterioration condition
and speed based on E3 = 80 beam structural elements that underwent intervention h3.

An example of beam structural element that underwent repairs of type h3 is shown in
Figure 13. In this example, the condition and speed state estimates show improvements in
the health state of structural element e520

1 , following the intervention at year τ = 2011.
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±σModel ỹ520t,1 Inspection
Intervention h3 ±2σV (Ii)

20
08

20
10

20
12

20
14

20
16

20
18

20
20

20
22

−10

−8

−6

−4

−2

0
·10−1

Time (Year)

D
et

er
io

ra
tio

n
Sp

ee
d

of
e5

20 1

˜̇µ520t|T,1 ±2σ̇Model
±σ̇Model Intervention h3

Figure 13: Deterioration state analysis for the condition and the speed based on the
observations ỹ520

t,1 ∈ [25, 100] of the beam structural element e520
1 with an intervention h3 at

time τ = 2011 and error bars representing the inspectors’ uncertainty estimates.

Moreover, the service-life th associated with h3 interventions on beam elements is illustrated
by the CDF shown in Figure 14.
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Figure 14: Cumulative distribution function for the service-life th of intervention h3, based
on data from E3 = 80 beam structural elements.

5 Conclusions

In this paper, the effect of interventions is quantified as random variable based on visual
inspections. The proposed recursive quantification framework is integrated within a deterio-
ration model SSM-KR. The performance of the quantification framework is verified with
synthetic data that emulates real data with interventions, followed by validation using cases
from real data. The verification results demonstrated the predictive capacity with the true
expected improvements being within the confidence interval of the model estimates, for each
intervention category. Furthermore, the error in the deterioration state estimate following
an intervention is reported for a sample of synthetic structural elements. The error estimates
have shown that major repairs have a larger error after an intervention. This is justified by
the fact that the deterioration state estimates have a larger uncertainty in structures with
an average health condition. This limitation can be surpassed if more observations become
available. The proposed framework have also shown the capacity to estimate the service-life
of interventions, based on a single structural element and a population of structural elements.
Furthermore, the proposed framework is validated with real data that includes two types
of structural elements, namely front walls and beams structural elements. The validation
involved estimating the expected improvement following different intervention categories as
well as time series analyses for individual structural elements, in addition to estimating the
service-life for each type of intervention. The analyses with real data have shown a similar
performance in comparison with the synthetic data. In summary, the proposed framework
enables estimating the effect of interventions, locally and on network-scale, as random
variables. This lays the ground work for performing probabilistic life-time deterioration
analyses, risk analyses, and interventions planning.
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A Appendix 1

A.1 Decision Making for Synthetic Interventions

The decision making for synthetic interventions is done based on if-then rules defined in
Table 6. These rules have two inputs and one output, the inputs are the health condition
and the priority index of the bridge, while the output is the type of the intervention. In
order to limit the number of rules, the deterioration condition and the priority index are
discretized into categories as shown in Figure 15. An example that demonstrates the use of
this system is for a structural element that has a health condition 80 and priority 2.5, the
applied intervention is h2. Moreover, the health condition category V.D. refers to a very
damaged state of which a replacement action is required. The replacement actions are not
considered in this study, provided that this type of interventions results in changing the
entire structural element.

Table 6: Table of synthetic interventions hr applied for a given health condition and a
priority index.

Health Condition
Damaged Good Excellent

Priority
High h3 h2 h1

Medium h3 h2 h0

Low h2 h1 h0
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Figure 15: Categories for the health condition and the priority index.
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